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K -trivial sets of natural numbers

I K -trivial sets were first studied by Chaitin and Solovay in 1975.
They form a key class at the interface of computability and randomness.

I Coincidence results were obtained from the early 2000s (Hirschfeldt,
Downey, N., Stephan, ...). K -trivial sets are
I far from random by definition
I weak as an oracle
I computably approximable with a finite total cost of changes.

I K -trivials induce an ideal in the ∆0
2 Turing degrees generated by its c.e.

members.

We will extend the notion of K -triviality to the more general setting of
points in a computable metric spaceM.
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Main results on K -trivial points (Melnikov and N., 2014)

I Existence and preservation:
I If a computable metric spaceM is perfect then it contains a

K -trivial non-computable point.
I K -triviality is preserved under computable maps

between metric spaces.

I We define K -triviality of a point x ∈M via fast converging Cauchy
sequences of special points.

This global condition is equivalent to a “local” condition saying that the
information content of special points closer and closer to x grows very
slowly.
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Computable metric spaces

Definition
Let (M, d) be a complete metric space, and let (αi )i∈N be a dense
sequence in M.

I M = (M, d , (αi )i∈N) is a computable metric space if d(αi , αk) is a
computable real uniformly in i , k . (Repetition, i.e. distance value 0
even for i 6= k , is allowed.)

I We call the elements of the sequence (αi )i∈N the special points. We
call such (αi )i∈N a computable structure of the metric space. Not
necessarily unique.

I We often identify αi with i ∈ N, e.g. when using the special points as
oracle queries.

Examples of computable structures: in R the rationals; in C[0, 1] the
polygonal functions with rational breakpoints.

André Nies (Auckland) Metric spaces and computability theory MM 20 5 / 24



Cauchy names for points

Definition
I A sequence (ps)s∈N of special points is called a Cauchy name if

d(ps , ps+1) ≤ 2−s−1 for each s ∈ N.

I SinceM is complete, x = lims ps exists. We say that (ps)s∈N is a
Cauchy name for x . Note that d(x , ps) ≤ 2−s .

I A point x is computable if it has a computable Cauchy name.
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Defining K : Prefix-free machines

A partial computable function from binary strings to binary strings is called
prefix-free machine if its domain is an anti-chain under the prefix relation of
strings.

There is a universal prefix-free machine U: for every prefix-free machine M,

M(σ) = y implies U(τ) = y ,

for a string τ that is only by a constant dM longer than σ.
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Descriptive string complexity K

I The prefix-free Kolmogorov complexity of a string y is the length of a
shortest U-description of y :

K (y) = min{|σ| : U(σ) = y}.

I As a basic fact, 2−K(y) is proportional to

λ{X ∈ 2N : U(σ) = y for some initial segment σ of X},
where λ denotes product measure in Cantor space 2N.

I Informally, this is the probability that U prints y .
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K -trivial functions f : N→ N

Definition
A function f : N→ N is called K -trivial if

∃b ∈ N ∀n ∈ N [K (f � n) ≤ K (n) + b].

Here f � n denotes the tuple of the first n values of f , and we assume some
effective encoding of tuples over N by natural numbers.

This extends the usual definition for sets (seen as 0, 1-valued functions).
Each computable function is K -trivial, but not conversely.

Proposition
A function f is K -trivial ⇐⇒ graph {〈n, f (n)〉 : n ∈ N} is K -trivial.

By the corresponding result for sets (N., 2003), each K -trivial function f is
low: f ′ ≤T ∅′.
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K -trivial points

LetM be a computable metric space. Recall that a point x ∈ M is called
computable if it has a computable Cauchy name. This can be extended to
any lowness property of functions. E.g. low points. Here is a different kind
of generalisation.

Definition
A point x ∈ M is called K -trivial if it has a K -trivial Cauchy name.

The following form computable metric spaces in a natural way:
I The unit interval.
I Baire space NN with the ultrametric distance function

d(f , g) = max{2−n : f (n) 6= g(n)}.
In these spaces, a point is K -trivial iff it is K -trivial in the usual sense.
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Preservation of K -triviality in metric spaces
A map F between computable metric spaces is called computable if there is
a Turing functional Φ that turns every Cauchy name for x into a Cauchy
name for F (x).

Proposition
LetM,N be computable metric spaces, and let the map F : M→N be
computable. If x is K -trivial inM, then F (x) is K -trivial in N .

I This relies on a hard result [N., 05], the downward closure under ≤T

of the class of K -trivial sets.

I However, the result can be verified directly if F is Lipschitz.

I This already shows that K -triviality is invariant under the change of
the computable structure to an equivalent one (i.e., when the identity
map is computable in both directions).
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A metric space where all K -trivial points are computable
Example
There is a computable metric spaceM such that

I M contains a noncomputable point.

I The only K -trivial points are the computable points.

Proof.
Ω denotes the measure of the domain of the universal prefix-free
machine U. Note that Ω ≡T ∅′.
Ωs denotes the measure of the domain of U at stage s. Let

M = {Ωs : s ∈ N} ∪ {Ω}

with the metric inherited from the unit interval.
The computable structure is given by αs = Ωs .
If g is a Cauchy name for Ω then Ω ≤T g , so g is not K -trivial.
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Existence of K -trivials
Brattka and Gherardi, 2009:
If a computable metric spaceM has no isolated points, then there is a
computable injective map F : {0, 1}N →M which is Lipschitz.

Theorem (Melnikov and N.)
Suppose a computable metric space has no isolated points.
Then it contains a K -trivial, non-computable point.

Proof.
I Let A ∈ {0, 1}N be a K -trivial non-computable set.

I Then F (A) is K -trivial, where F is the function above.

I The inverse of F is computable on its domain. Hence the point F (A)

is non-computable.
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The local condition

As usual we fix a computable metric spaceM.
Letters p, q range over special points inM.
We write K (u, v) for K (〈u, v〉), the complexity of the ordered pair.

Definition
We say that x ∈ M is locally K -trivial via b if

∀n ∃p special [d(x , p) ≤ 2−n ∧ K (p, n) ≤ K (n) + b].

I Given a set A ⊆ N, from A� n we can determine n, but in general from
a special point p we cannot determine the intended distance to x .

I So this definition is the appropriate analog of the usual definition
K (A� n) ≤ K (n) + O(1) in Cantor space.

I The condition K (p) ≤ K (n) + b is insufficient by an example of
Melnikov and N.
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Equivalence with K -triviality

The local condition appears to be weaker, because we only require that
pairs 〈p, n〉 be compressible, not the whole tuple of special points for
distances down to 2−n. However, this intuition is misleading:

Theorem
x ∈ M is K -trivial ⇐⇒ x satisfies the local condition for some constant b:

∀n ∃p special [d(x , p) ≤ 2−n ∧ K (p, n) ≤ K (n) + b].

Proof idea, =⇒.
This is easy: let f be a K -trivial Cauchy name for x . Given n, let p = f (n).
Then

K (p, n) ≤ K (f � (n + 1)) + O(1) ≤ K (n) + O(1).
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Equivalence with K -triviality

Theorem (again)
x ∈ M is K -trivial ⇐⇒

∀n ∃p special [d(x , p) ≤ 2−n ∧ K (p, n) ≤ K (n) + b].

Proof idea, ⇐=. Recall that we identify special points with numbers.
I There are at most O(2b) many special p such that K (p, n) ≤ K (n) + b.
I for sufficiently large N, there is a special point pN as above that is the

only such point at distance at most 2−N from x .
I Fix a Solovay function h (i.e., h is computable, K (n) ≤ h(n), with

equality infinitely often). Consider the infinite c.e. tree

T = {(pN , . . . , pr ) : (pi , pi+1) ≤ 2−i−1 ∧ K (pi , i) ≤ h(i) + b}

for all i . An infinite path yields the required Cauchy name.
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Dynamic characterization of K -trivial points
In recent work with Greenberg and Turetsky, we provide a dynamic
characterization of K -trivial points via the amount of changes of a
computable approximation.

Let cΩ(x , s) = Ωs − Ωx , where x , s ∈ N. [N., 2014]: a set A ⊆ N is
K -trivial iff it has a computable approximation with a finite total cΩ-cost of
changes. This cost is defined as

∑
s cΩ(xs , s), where least change is at xs .

Metric version of cΩ:

mΩ(θ, s) = Ωs − Ωb− log θc,

for θ ∈ Q+, s ∈ N.

Theorem (With Greenberg and Turetsky)
A point x ∈ M is K -trivial ⇐⇒ there is a computable sequence (ps) of
special points converging to x such that

∑
s mΩ(d(ps , ps+1), s) <∞.
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Left-c.e. metric spaces

The following is work with A. Gavruskin (LMJ, 2014).
A real β is called left-c.e. if the left cut {q ∈ Q : q < β} is c.e.

Definition
Let (M, d) be a complete metric space, and let (αi )i∈N be a dense
sequence in M.

I M = (M, d , (αi )i∈N) is a left-c.e. metric space if d(αi , αk) is a left-c.e.
real uniformly in i , k .

Intuitively, the distance between special points can increase over time.

In this setting the Cauchy names form a Π0
1 class in Baire space. This,

along with the result to follow, suggests that being left-c.e. is more the
natural notion for a distance function, rather than right c.e.
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Examples

Let β be a left-c.e. real. Then [0, β] and {z ∈ C : |z | = β} are naturally
left-c.e. metric spaces.

Theorem (Gavruskin and N., LMJ, 2014)
Let γ > 0 be a left-c.e. real. Within the class of left-c.e. metric spaces of
diameter at most γ, there is a left-c.e. metric space U which is universal
with respect to computable isometric embeddings.

Co-c.e. equivalence relations can be seen as left-c.e. (pseudo)metric spaces
where the distance between special points can only jump from 0 (equal) to
1 (different).
So our result extends a result of Ianovski, Miller, Ng and N. (JSL, 2014)
that among the co-c.e. equivalence relations there is one that is universal
with respect to computable embeddings.
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The condition that the diameter be bounded is necessary:

Proposition (Gavruskin and N., LMJ, 2014)
LetM = (M, d , (αi )i∈N) be a left-c.e. metric space. There exists a
left-c.e. ultrametric space that cannot be isometrically embedded into M.
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Future directions

I A main concept in the book by Pour-El/Richards is computable
sequences (xn)n∈N inM. Study K -trivial sequences.

I The A.A. Markov/Ceitin (1950s) approach to computable analysis is
based on computable points only. Relate this theory to K -triviality of
points. E.g., if a function F : Rc → Rc is Markov computable, can it
be continuously extended to the K -trivial points?

I Study K -trivial points in the more general context of left-c.e. metric
spaces.
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