Metric spaces and computability theory

André Nies

Auckland

Mal'cev Meeting, 2020 Joint works with Melnikov, and Gavruskin

André Nies (Auckland)

K-trivial sets of natural numbers

- K-trivial sets were first studied by Chaitin and Solovay in 1975.
 They form a key class at the interface of computability and randomness.
- ► Coincidence results were obtained from the early 2000s (Hirschfeldt, Downey, N., Stephan, ...). K-trivial sets are
 - far from random by definition
 - weak as an oracle
 - computably approximable with a finite total cost of changes.
- K-trivials induce an ideal in the Δ⁰₂ Turing degrees generated by its c.e. members.

We will extend the notion of K-triviality to the more general setting of points in a computable metric space \mathcal{M} .

Main results on K-trivial points (Melnikov and N., 2014)

- Existence and preservation:
 - If a computable metric space *M* is perfect then it contains a *K*-trivial non-computable point.
 - K-triviality is preserved under computable maps between metric spaces.
- ▶ We define K-triviality of a point x ∈ M via fast converging Cauchy sequences of special points.

This global condition is equivalent to a "local" condition saying that the information content of special points closer and closer to x grows very slowly.

2) Existence results and preservation results for K-trivials

3 A local condition characterizing K-trivials

4 Spaces with a left-c.e. distance function

Computable metric spaces

Definition

Let (M, d) be a complete metric space, and let $(\alpha_i)_{i \in \mathbb{N}}$ be a dense sequence in M.

- M = (M, d, (α_i)_{i∈ℕ}) is a computable metric space if d(α_i, α_k) is a computable real uniformly in i, k. (Repetition, i.e. distance value 0 even for i ≠ k, is allowed.)
- We call the elements of the sequence (α_i)_{i∈N} the special points. We call such (α_i)_{i∈N} a computable structure of the metric space. Not necessarily unique.
- ▶ We often identify α_i with $i \in \mathbb{N}$, e.g. when using the special points as oracle queries.

Examples of computable structures: in $\mathbb R$ the rationals; in $\mathcal C[0,1]$ the polygonal functions with rational breakpoints.

André Nies (Auckland)

Cauchy names for points

Definition

- A sequence (p_s)_{s∈N} of special points is called a Cauchy name if d(p_s, p_{s+1}) ≤ 2^{-s-1} for each s ∈ N.
- Since *M* is complete, x = lim_s p_s exists. We say that (p_s)_{s∈N} is a Cauchy name for x. Note that d(x, p_s) ≤ 2^{-s}.

▶ A point x is computable if it has a computable Cauchy name.

Defining K: Prefix-free machines

A partial computable function from binary strings to binary strings is called prefix-free machine if its domain is an anti-chain under the prefix relation of strings.

There is a universal prefix-free machine \mathbb{U} : for every prefix-free machine M,

$$M(\sigma) = y$$
 implies $\mathbb{U}(\tau) = y$,

for a string τ that is only by a constant d_M longer than σ .

Descriptive string complexity K

The prefix-free Kolmogorov complexity of a string y is the length of a shortest U-description of y:

 $K(y) = \min\{|\sigma|: \mathbb{U}(\sigma) = y\}.$

 As a basic fact, 2^{-K(y)} is proportional to
 λ{X ∈ 2^N: U(σ) = y for some initial segment σ of X},
 where λ denotes product measure in Cantor space 2^N.

• Informally, this is the probability that \mathbb{U} prints y.

K-trivial functions $f: \mathbb{N} \to \mathbb{N}$

Definition

A function $f: \mathbb{N} \to \mathbb{N}$ is called *K*-trivial if

```
\exists b \in \mathbb{N} \, \forall n \in \mathbb{N} \, [K(f \upharpoonright n) \leq K(n) + b].
```

Here $f \upharpoonright n$ denotes the tuple of the first *n* values of *f*, and we assume some effective encoding of tuples over \mathbb{N} by natural numbers.

This extends the usual definition for sets (seen as 0, 1-valued functions). Each computable function is K-trivial, but not conversely.

Proposition

A function f is K-trivial \iff graph $\{\langle n, f(n) \rangle : n \in \mathbb{N}\}$ is K-trivial.

By the corresponding result for sets (N., 2003), each K-trivial function f is low: $f' \leq_T \emptyset'$.

K-trivial points

Let \mathcal{M} be a computable metric space. Recall that a point $x \in M$ is called computable if it has a computable Cauchy name. This can be extended to any lowness property of functions. E.g. low points. Here is a different kind of generalisation.

Definition

A point $x \in M$ is called *K*-trivial if it has a *K*-trivial Cauchy name.

The following form computable metric spaces in a natural way:

- ► The unit interval.
- Baire space N^N with the ultrametric distance function d(f,g) = max{2⁻ⁿ: f(n) ≠ g(n)}.

In these spaces, a point is K-trivial iff it is K-trivial in the usual sense.

Basics on computable metric spaces and *K*-triviality

2 Existence results and preservation results for K-trivials

3 A local condition characterizing *K*-trivials

4 Spaces with a left-c.e. distance function

Preservation of K-triviality in metric spaces

A map F between computable metric spaces is called computable if there is a Turing functional Φ that turns every Cauchy name for x into a Cauchy name for F(x).

Proposition

Let \mathcal{M}, \mathcal{N} be computable metric spaces, and let the map $F : \mathcal{M} \to \mathcal{N}$ be computable. If x is K-trivial in \mathcal{M} , then F(x) is K-trivial in \mathcal{N} .

- ► This relies on a hard result [N., 05], the downward closure under ≤_T of the class of K-trivial sets.
- ▶ However, the result can be verified directly if *F* is Lipschitz.
- This already shows that K-triviality is invariant under the change of the computable structure to an equivalent one (i.e., when the identity map is computable in both directions).

A metric space where all K-trivial points are computable

Example

There is a computable metric space $\ensuremath{\mathcal{M}}$ such that

- *M* contains a noncomputable point.
- The only K-trivial points are the computable points.

Proof.

 Ω denotes the measure of the domain of the universal prefix-free machine $\mathbb U.$ Note that $\Omega\equiv_{\mathcal T} \emptyset'.$

 Ω_s denotes the measure of the domain of $\mathbb U$ at stage s. Let

$$M = \{\Omega_s : s \in \mathbb{N}\} \cup \{\Omega\}$$

with the metric inherited from the unit interval.

The computable structure is given by $\alpha_s = \Omega_s$.

If g is a Cauchy name for Ω then $\Omega \leq_{\mathrm{T}} g$, so g is not K-trivial.

Existence of K-trivials

Brattka and Gherardi, 2009:

If a computable metric space \mathcal{M} has no isolated points, then there is a computable injective map $F \colon \{0,1\}^{\mathbb{N}} \to \mathcal{M}$ which is Lipschitz.

Theorem (Melnikov and N.)

Suppose a computable metric space has no isolated points. Then it contains a K-trivial, non-computable point.

Proof.

- Let $A \in \{0,1\}^{\mathbb{N}}$ be a *K*-trivial non-computable set.
- Then F(A) is K-trivial, where F is the function above.
- The inverse of F is computable on its domain. Hence the point F(A) is non-computable.

Basics on computable metric spaces and K-triviality

Existence results and preservation results for K-trivials

3 A local condition characterizing K-trivials

9 Spaces with a left-c.e. distance function

The local condition

As usual we fix a computable metric space \mathcal{M} . Letters p, q range over special points in \mathcal{M} . We write K(u, v) for $K(\langle u, v \rangle)$, the complexity of the ordered pair.

Definition

We say that $x \in M$ is locally *K*-trivial via *b* if

 $\forall n \exists p \text{ special } [d(x, p) \leq 2^{-n} \land K(p, n) \leq K(n) + b].$

- Given a set A ⊆ N, from A ↾ n we can determine n, but in general from a special point p we cannot determine the intended distance to x.
- ▶ So this definition is the appropriate analog of the usual definition $K(A \upharpoonright n) \le K(n) + O(1)$ in Cantor space.
- ► The condition K(p) ≤ K(n) + b is insufficient by an example of Melnikov and N.

Equivalence with K-triviality

The local condition appears to be weaker, because we only require that pairs $\langle p, n \rangle$ be compressible, not the whole tuple of special points for distances down to 2^{-n} . However, this intuition is misleading:

Theorem

 $x \in M$ is K-trivial $\iff x$ satisfies the local condition for some constant b:

 $\forall n \exists p \text{ special } [d(x, p) \leq 2^{-n} \land K(p, n) \leq K(n) + b].$

Proof idea, \Longrightarrow .

This is easy: let f be a K-trivial Cauchy name for x. Given n, let p = f(n). Then

$$K(p,n) \leq K(f \upharpoonright (n+1)) + O(1) \leq K(n) + O(1).$$

Equivalence with K-triviality

Theorem (again)

 $x \in M$ is K-trivial \iff

 $\forall n \exists p \text{ special } [d(x,p) \leq 2^{-n} \land K(p,n) \leq K(n) + b].$

Proof idea, —. Recall that we identify special points with numbers.

- There are at most $O(2^b)$ many special p such that $K(p, n) \le K(n) + b$.
- ▶ for sufficiently large N, there is a special point p_N as above that is the only such point at distance at most 2^{-N} from x.
- ► Fix a Solovay function h (i.e., h is computable, K(n) ≤ h(n), with equality infinitely often). Consider the infinite c.e. tree

$$T = \{(p_N, \ldots, p_r): (p_i, p_{i+1}) \le 2^{-i-1} \land K(p_i, i) \le h(i) + b\}$$

for all *i*. An infinite path yields the required Cauchy name.

Dynamic characterization of K-trivial points

In recent work with Greenberg and Turetsky, we provide a dynamic characterization of K-trivial points via the amount of changes of a computable approximation.

Let $c_{\Omega}(x,s) = \Omega_s - \Omega_x$, where $x, s \in \mathbb{N}$. [N., 2014]: a set $A \subseteq \mathbb{N}$ is *K*-trivial iff it has a computable approximation with a finite total c_{Ω} -cost of changes. This cost is defined as $\sum_s c_{\Omega}(x_s, s)$, where least change is at x_s .

Metric version of c_{Ω} :

$$m_{\Omega}(\theta, s) = \Omega_s - \Omega_{\lfloor -\log \theta
floor},$$

for $\theta \in \mathbb{Q}^+$, $s \in \mathbb{N}$.

Theorem (With Greenberg and Turetsky)

A point $x \in M$ is K-trivial \iff there is a computable sequence (p_s) of special points converging to x such that $\sum_s m_{\Omega}(d(p_s, p_{s+1}), s) < \infty$.

4 Spaces with a left-c.e. distance function

Left-c.e. metric spaces

The following is work with A. Gavruskin (LMJ, 2014). A real β is called left-c.e. if the left cut $\{q \in \mathbb{Q}: q < \beta\}$ is c.e.

Definition

Let (M, d) be a complete metric space, and let $(\alpha_i)_{i \in \mathbb{N}}$ be a dense sequence in M.

M = (M, d, (α_i)_{i∈ℕ}) is a left-c.e. metric space if d(α_i, α_k) is a left-c.e. real uniformly in i, k.

Intuitively, the distance between special points can increase over time.

In this setting the Cauchy names form a Π_1^0 class in Baire space. This, along with the result to follow, suggests that being left-c.e. is more the natural notion for a distance function, rather than right c.e.

Examples

Let β be a left-c.e. real. Then $[0,\beta]$ and $\{z \in \mathbb{C} : |z| = \beta\}$ are naturally left-c.e. metric spaces.

Theorem (Gavruskin and N., LMJ, 2014)

Let $\gamma > 0$ be a left-c.e. real. Within the class of left-c.e. metric spaces of diameter at most γ , there is a left-c.e. metric space U which is universal with respect to computable isometric embeddings.

Co-c.e. equivalence relations can be seen as left-c.e. (pseudo)metric spaces where the distance between special points can only jump from 0 (equal) to 1 (different).

So our result extends a result of Ianovski, Miller, Ng and N. (JSL, 2014) that among the co-c.e. equivalence relations there is one that is universal with respect to computable embeddings.

The condition that the diameter be bounded is necessary:

Proposition (Gavruskin and N., LMJ, 2014)

Let $\mathcal{M} = (M, d, (\alpha_i)_{i \in \mathbb{N}})$ be a left-c.e. metric space. There exists a left-c.e. ultrametric space that cannot be isometrically embedded into M.

Future directions

- A main concept in the book by Pour-El/Richards is computable sequences (x_n)_{n∈ℕ} in *M*. Study *K*-trivial sequences.
- ► The A.A. Markov/Ceitin (1950s) approach to computable analysis is based on computable points only. Relate this theory to K-triviality of points. E.g., if a function F: ℝ_c → ℝ_c is Markov computable, can it be continuously extended to the K-trivial points?
- Study K-trivial points in the more general context of left-c.e. metric spaces.